

Mathematics Extension 2

General Instructions	 Reading time – 10 minutes Working time – 3 hours Write using black pen Calculators approved by NESA may be used A reference sheet is provided at the back of this paper In Questions 11 – 16, show relevant mathematical reasoning and/or calculations Marks may be deducted for careless or badly arranged work
Total marks: 100	 Section I – 10 marks (pages 2 – 5) Attempt Questions 1 – 10 Allow about 15 minutes for this section Section II – 90 marks (pages 6 – 13) Attempt Questions 11 – 16 Allow about 2 hours and 45 minutes for this section

Section I

10 marks Attempt Questions 1 – 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1 - 10

1 Consider the following statement

"If the volleyball team doesn't play well, then they are not training enough" Which of the following is the contrapositive of this statement?

- (A) If they are not training enough, then the volleyball team doesn't play well.
- (B) If they are training enough, then the volleyball team plays well.
- (C) If the volleyball teamplays well, then they are training enough.
- (D) If they train enough, then the volleyball team will most likely win.

2
$$\int f(x)\sin x dx = -f(x)\cos x + 3\int x^2\cos x dx$$

Which of the following could be f(x)?

- (A) x^3
- (B) $-x^3$
- (C) $3x^2$
- (D) $-3x^2$
- **3** Which one of the following relations does **NOT** have a locus that is a straight line passing through the origin?
 - (A) $z = i \overline{z}$
 - (B) $z + \overline{z} = 0$
 - (C) $\operatorname{Re}(z) 2\operatorname{Im}(z) = 0$
 - (D) Re(z) + Im(z) = 1

4 Which of the following is equivalent to

$$\frac{e^{-\frac{i\pi}{2}}}{e^{\frac{i\pi}{6}}}?$$

(A)
$$-\frac{1}{2} - \frac{\sqrt{3}}{2}i$$

(B) $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$
(C) $\frac{1}{2} - \frac{\sqrt{3}}{2}i$
(D) $\frac{1}{2} + \frac{\sqrt{3}}{2}i$

5 Which of the following diagrams could represent the location of the roots of $z^5 + z^2 - z + c = 0$ in the complex plane, where $c \in \mathbb{R}$?

6 Three forces F_1 , F_2 and F_3 act on a particle as shown in the diagram below

If the particle is in equilibrium, which of the following statements about the forces is true?

- (A) $F_1 = F_3 = \frac{F_2}{\sqrt{3}}$
- (B) $F_2 = F_3 = \frac{F_1}{\sqrt{3}}$
- (C) $F_2 = F_3 = \sqrt{3} F_1$

(D)
$$F_1 = F_2 = \sqrt{3} F_3$$

- 8 If the points A, B and C are such that $\overrightarrow{AB} \cdot \overrightarrow{BC} = 0$, which of the following statements **MUST** be true?
 - (A) Either \overrightarrow{AB} or \overrightarrow{BC} is the zero vector.
 - (B) $\left| \overrightarrow{AB} \right| = \left| \overrightarrow{BC} \right|$
 - (C) A, B and C are collinear.
 - (D) $\operatorname{proj}_{\overrightarrow{BC}} \overrightarrow{AC} = \overrightarrow{BC}$
- 9 A sufficient condition for a $\triangle ABC$ to be right-angled is that $a^2 + b^2 = c^2$. Which of the following is an equivalent statement?
 - (A) If $\triangle ABC$ is right-angled, then $a^2 + b^2 = c^2$.
 - (B) If $a^2 + b^2 = c^2$, then $\triangle ABC$ is right-angled.
 - (C) If $a^2 + b^2 \neq c^2$, then $\triangle ABC$ is not right-angled.
 - (D) $\triangle ABC$ is right-angled if and only if $a^2 + b^2 = c^2$.
- 10 The displacement of a particle moving along the x-axis is given by

$$x = 2\cos(nt) - \sin[(2n-1)t]$$
, where $n \neq 1$

What is the value of *n*, if the motion of the particle is not simple harmonic motion?

(A)
$$n = \frac{1}{2}$$

(B) $n = \frac{1}{3}$
(C) $n = \frac{1}{4}$
(D) $n = 0$

Section II

90 marks Attempt Questions 11 – 16 Allow about 2 hours and 45 minutes for this section

Answer each question on the appropriate answer sheet. Each answer sheet must show your NESA#. Extra paper is available.

For questions in Section II, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (14 marks) Use the pages labelled Question 11 in the answer booklet

- (a) Consider the complex numbers z = 2 + i and w = 3 2i. Find, in Cartesian form, the values of
 - (i) $\frac{1}{w}$ 1
 - (ii) $z + \overline{w}$ 1

(iv) |z-w| 1

(b) Find
$$\int \frac{dx}{\sqrt{2+2x-x^2}}$$
. 2

- (c) (i) Write the complex number $\sqrt{2} i\sqrt{2}$ in exponential form. 2
 - (ii) Hence find the exact value of $(\sqrt{2} i\sqrt{2})^9$, giving your answer in the 2 form a + ib.

Question 11 continues on page 7

Question 11 (continued)

(d) A particle is moving along a straight line and is released from rest at a point 2 metres to the right of the origin. It is known that the particle moves in simple harmonic motion described by the equation

$$\ddot{x} = -4(x-5)$$

- (i) Find a possible displacement-time equation that would describe the particle's 2 motion.
- (ii) Determine the particle's greatest speed. *1*
- (iii) How long does it take for the particle to complete one oscillation? *1*

End of Question 11

Question 12 (15 marks) Use the pages labelled Question 12 in the answer booklet

(a) Consider the two lines in three dimensions given by

$$r = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 2 \\ -3 \end{pmatrix} \text{ and } r = \begin{pmatrix} 4 \\ -2 \\ 9 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$$

- (i) By equating components, show that these two lines never intersect. 2
 (ii) Explain why these lines are not parallel. 1
- (b) Solve the quadratic equation $z^2 3z + (3 + i) = 0$.

(c) Find
$$\int \frac{dx}{(x+2)\sqrt{x^2+4x-5}}$$
. 3

- (d) (i) Express the roots of $z^5 1 = 0$ in polar form. 2
 - (ii) Find real numbers *a* and *b* such that 2

$$x^{4} + x^{3} + x^{2} + x + 1 = (x^{2} + ax + 1)(x^{2} + bx + 1)$$

(iii) Hence find the exact value of
$$\cos \frac{2\pi}{5}$$
. 2

Question 13 (15 marks) Use the pages labelled Question 13 in the answer booklet

(a) A particle is moving along the *x*-axis. Initially the particle is at the origin and its velocity is given by

$$v=(k-x)^2$$

for some positive constant k, and where x is its displacement from the origin, measured in metres after t seconds.

- (i) Show that x < k for all values of *t*.
- (ii) Deduce that the particle is always moving to the right and slowing down. 2

3

(b) (i) Show that
$$\int_{0}^{1} \frac{5 - 5x^2}{(1 + 2x)(1 + x^2)} dx = \frac{1}{2} \left(\pi + \ln \frac{27}{16} \right).$$
 3

(ii) Hence find
$$\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{1 + 2\sin x + \cos x} dx .$$
 3

(c) The distinct points *P*, *Q*, *R* and *S* in the Argand diagram, lie on a circle of radius *a* units, centred at the origin, and are represented by the complex numbers *p*, *q*, *r* and *s* respectively.

(i) Show that
$$pq = \frac{a^2(p-q)}{\overline{q}-\overline{p}}$$
. 2

(ii) Deduce that if the chords PQ and RS are perpendicular, then pq + rs = 0. 2

Question 14 (14 marks) Use the pages labelled Question 14 in the answer booklet

(a) A triangular wedge is fixed to a horizontal surface. The base angles of the wedge are α and $\frac{\pi}{2} - \alpha$.

Two particles of mass M and m, lie on different faces of the wedge, and are connected by a light string which passes over a small pulley at the apex of the wedge, as shown in the diagram.

4

The contacts between the particles and the wedge are smooth (i.e. you may assume that friction is negligible).

Show that if $\tan \alpha > \frac{m}{M}$, the particle of mass *M* will accelerate down the face of the wedge.

(b) (i) For all real numbers
$$a, b \ge 0$$
, prove that $a + b \ge 2\sqrt{ab}$.

(ii) Solve
$$(2^{2x}+1)(2^{2y}+2)(2^{2z}+8) = 2^{5+x+y+z}$$
. 3

(c) The distinct points O(0,0,0), $A(a^3,a^2,a)$ and $B(b^3,b^2,b)$ with a > b > 0 lie in three-dimensional space.

(i) Prove that A and B cannot both lie on a sphere centred at O. 3
(ii) Given that a and b can vary with
$$ab = 1$$
, show that $0 < \angle AOB < \frac{\pi}{2}$. 3

Question 15 (15 marks) Use the pages labelled Question 15 in the answer booklet

(a) Using the substitution
$$u = -x$$
, or otherwise, evaluate $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin^2 x}{1+2^x} dx$.

3

4

(b) A particle of mass m kg is dropped from rest in a medium where the resistance is mkv^2 newtons where the speed of the particle is v m/s and the terminal velocity is W m/s.

After *t* seconds, the particle has fallen *x* metres, and the acceleration due to gravity is $g \text{ m/s}^2$.

- (i) With the use of a force diagram, explain why $\ddot{x} = \frac{g}{W^2}(W^2 v^2)$. 2
- (ii) Show that

$$Wt - x = \frac{W^2}{g} \ln\left(1 + \frac{v}{W}\right)$$

(Note: you may use
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + c$$
 without proof)

- (c)(i) Prove that the cube root of any irrational number, is also an irrational 3 number.
 - (ii) Let $u_n = 5^{\frac{1}{3^n}}$. Given that $\sqrt[3]{5}$ is an irrational number, prove by induction 3 that u_n is an irrational number, for all positive integer values of n.

Question 16 (17 marks) Use the pages labelled Question 16 in the answer booklet

(a) Let
$$I_n = \int_{0}^{2\pi} e^x \cos nx \, dx$$
 where $n \in \mathbb{Z}^+$
(i) Show that $I_n = \frac{1}{n^2 + 1} (e^{2\pi} - 1)$.

(ii) Find the exact value of
$$\int_{0}^{2\pi} e^x \cos x \cos 6x \, dx \, . \qquad 3$$

Question 16 continues on page 13

Question 16 (continued)

(b) A tetrahedron is called isosceles if each pair of edges, which do not share a vertex, are equal. i.e. AB = OC, BC = OA and AC = OB

(i) Explain why all four faces of an isosceles tetrahedron are congruent. *1*

(ii) Show that
$$2\underline{b} \cdot \underline{c} = |\underline{b}|^2 + |\underline{c}|^2 - |\underline{a}|^2$$
 1

(iii) Show that
$$\underline{a} \cdot (\underline{b} + \underline{c}) = |\underline{a}|^2$$
 1

- (iv) By considering the length of the vector $\underline{a} \underline{b} \underline{c}$, or otherwise, show 3 that in an isosceles tetrahedron, none of the angles between pairs of edges which share a vertex, can be obtuse.
- (v) Explain why it is not possible for any of the angles between pairs of edges in 2 an isosceles tetrahedron to be a right angle.
- (c) Prove

$$\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \frac{1}{\sqrt{5}+\sqrt{6}} + \dots + \frac{1}{\sqrt{2023}+\sqrt{2024}} > 22$$

3

End of paper

BAULKHAM HILLS HIGH SCHOOL 2024 YEAR 12 EXTENSION 2 TRIAL HSC SOLUTIONS

Solution	Marks	Comments
SECTION I		
1. $\mathbf{B} - P$: the volleyball team doesn't play well O: they are not training enough		
$(P \Rightarrow Q) \Leftrightarrow (\neg Q \Rightarrow \neg P)$	1	
C is the contrapositive of the statement		
2. A – $\int f(x) \sin x dx$ $u = f(x)$ $v = -\cos x$		
$\int dy = f'(x) dx \qquad dy = \sin x dx$		
$= -f(x)\cos x + \int f'(x)\cos x dx$	1	
$\therefore f'(x) = 3x^2$		
$f(\mathbf{r}) = \mathbf{r}^3$		
3 D - A: $r + iv = i(r - iv)$ B : $2r = 0$		
= i x + i y = i (x + i y)		
$= ix + y \qquad x - 0$		
(x-y) + (x-y)i = 0 which passes through (0,0)		
$\therefore \qquad y = x$		
which passes through (0,0)	1	
C: $x - 2y = 0$ D: $x + y = 1$		
$y = \frac{x}{1-x}$		
$\frac{2}{2}$ which does NOT pass through (0,0)		
which passes through $(0,0)$		
$e^{-\frac{i\pi}{2}} -\frac{2i}{3}$		
4. A - $\frac{i\pi}{\pi} = e^{-3}$		
<i>e</i> ⁶		
$=\cos\left(-\frac{2\pi}{2\pi}\right)+i\sin\left(-\frac{2\pi}{2\pi}\right)$	1	
$\cos\left(\begin{array}{c}3\end{array}\right)$ + $\sin\left(\begin{array}{c}3\end{array}\right)$		
$1 \sqrt{3}$.		
$= -\frac{1}{2} - \frac{1}{2}i$		
5. B - As the coefficients are all real, complex roots must appear in conjugate pairs, this eliminates options A and D.		
As the polynomial is of an odd order, then there must be at least one real root, which	1	
eliminates option C.		
Thus, option B is the only possible option		
6. B – Resolving forces vertically Resolving forces horizontally		
$F_1 \sin 30^\circ$ $F_1 \cos 30^\circ F_3 \cos 60^\circ$		
$E_{asin60^{\circ}}$		
1'351100	1	
$F_1 \sin 30^\circ = F_3 \sin 60^\circ$ $F_1 \cos 30^\circ = F_2 + F_3 \cos 60^\circ$	-	
$F_1 = \sqrt{3}F_2 \qquad \qquad \sqrt{3}F_2 = 2F_2 + F_2$		
$F. \qquad 3F = 2F + F$		
$\frac{1}{\sqrt{2}} = F_3$		
$\frac{V_{3}}{(z+1)} = T_{3}$		
7. C - Re(ω) = 0 \Rightarrow arg $\left(\frac{z+1}{z-i}\right) = \pm \frac{\pi}{2}$	1	
: the locus of z is a circle with diameter joining $(-1,0)$ and $(0,-1)$ but not including these	1	
points		

Solution	Marks	Comments	
8. $\mathbf{D} - \overrightarrow{AB} \cdot \overrightarrow{BC} = 0 \Rightarrow \overrightarrow{AB} \perp \overrightarrow{BC}$ $\therefore \overrightarrow{BC}$ is the projection of \overrightarrow{AC} on \overrightarrow{BC} \overrightarrow{BC}	1		
9. B – In $P \Rightarrow Q$, P is a sufficient condition for Q Q is a necessary condition for P $\therefore P: a^2 + b^2 = c^2$ Q: $\triangle ABC$ is right angled thus B is the correct option NOTE: (A) \Leftrightarrow (C), as they are contrapositives (D) is an equivalence statement i.e. P \Leftrightarrow Q and thus both P and Q would be necessary conditions	1		
10. C - $x = 2\cos(nt) - \sin[(2n-1)t]$ $\dot{x} = -2n\sin(nt) - (2n-1)\cos[(2n-1)t]$ $\ddot{x} = -2n^2\cos(nt) + (2n-1)^2\sin[(2n-1)t]$ For SHM, $\dot{x} = -n^2x$, and as $-2n^2$ and $(2n-1)^2$ do not have a common factor, either $2n^2 = 0$ or $(2n-1)^2 = 0$ n = 0 $n = \frac{1}{2}$ Additionally, $-n^2x = -2n^2\cos(nt) + n^2\sin[(2n-1)t]$, so it will be SHM if $n^2 = (2n-1)^2$ $n^2 = 4n^2 - 4n + 1$ $3n^2 - 4n + 1 = 0$ (3n-1)(n-1) = 0 $n = \frac{1}{3}$ or $n = 1$ not a solution Thus $n = \frac{1}{4}$ is the value that does not produce an equation of motion that is SHM	1		
SECTION II			
QUESTION 11 11(a) (i) $\frac{1}{w} = \frac{\overline{w}}{ w ^2}$ $= \frac{3+2i}{3^2+(-2)^2}$ $= \frac{3}{13} + \frac{2}{13}i$	1	1 mark • Correct answer	
11 (a) (ii) $z + \overline{w} = 2 + i + 3 + 2i$	1	1 mark	
$ \begin{array}{r} = 5 + 3i \\ \hline 11 (a) (iii) zw = (2+i)(3-2i) \\ = 6 - 4i + 3i + 2 \\ = 8 - i \end{array} $	1	• Correct answer • Correct answer	
11 (a) (ii) $ z - w = -1 - 3i $ = $\sqrt{(-1)^2 + (-3)^2}$ = $\sqrt{10}$	1	1 mark • Correct answer	
11 (b) $\int \frac{dx}{\sqrt{2+2x-x^2}}$ $= \int \frac{dx}{\sqrt{3-(x-1)^2}}$ $= \sin^{-1}\left(\frac{x-1}{\sqrt{3}}\right) + c$	2	 2 marks Correct solution 1 mark Completes the square in the denominator 	

Solution		Comments
11 (c) (i) $ \sqrt{2} - i\sqrt{2} = \sqrt{(\sqrt{2})^2 + (-\sqrt{2})^2}$ Arg $(\sqrt{2} - i\sqrt{2}) = \tan^{-1}\left(\frac{-\sqrt{2}}{\sqrt{2}}\right)$ = $\sqrt{4}$ = 2 = $-\frac{\pi}{4}$	2	 2 marks Correct solution 1 mark Obtains correct modulus or argument
$::\sqrt{2} - i\sqrt{2} = 2e^{-4}$ 11 (c) (ii) $(\sqrt{2} - i\sqrt{2})^9 = (2e^{-\frac{i\pi}{4}})^9$ $= 2^9 e^{-\frac{9i\pi}{4}}$ $= 512 \left[\cos\left(-\frac{9\pi}{4}\right) + i\sin\left(-\frac{9\pi}{4}\right)\right]$ $= 512 \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i\right)$ $= 256\sqrt{2} - 256\sqrt{2}i$	2	 2 marks Correct solution 1 mark Attempts to apply de Moivre's theorem or equivalent merit
11 (d) (i) $\ddot{x} = -n^2(x-c) \Rightarrow x = a\cos nt + c$ $c=5$ $n^2 = 4$ n=2 $(n>0)x = a\cos 2t + 5when t = 0, x = 22 = a + 5a = -3\therefore x = 5 - 3\cos 2t$	2	 2 marks Correct solution 1 mark Finds two of <i>a</i>, <i>n</i> and <i>c</i>
11 (d) (ii) $x = 5 - 3\cos 2t$	1	1 mark
$\dot{x} = 6 \sin 2t$ \therefore greatest speed is 6 m/s	I	
11 (d) (iii) $T = \frac{2\pi}{2}$ = π	1	1 mark• Correct answer
\therefore it takes the particle π seconds to complete one oscillation		
$12 \text{ (a) (i)} \begin{pmatrix} 1\\0\\2 \end{pmatrix} + \lambda \begin{pmatrix} 2\\2\\-3 \end{pmatrix} = \begin{pmatrix} 4\\-2\\9 \end{pmatrix} + \mu \begin{pmatrix} 1\\2\\-2 \end{pmatrix} \Rightarrow \qquad 1 + 2\lambda = 4 + \mu \qquad \dots \qquad 1 \\ 2\lambda = -2 + 2\mu \dots \qquad 2 \\ 2 - 3\lambda = 9 - 2\mu \qquad \dots \qquad 3 \\ \text{substituting } \mu = 5 \text{ into } (3) \\ 1 - 2 + 2\mu = 4 + \mu \qquad \qquad 2 - 3\lambda = 9 - 10 \\ \mu = 5 \qquad \dots \qquad \lambda = 4 \qquad \qquad \lambda = 1 \neq 4$	2	 2 marks Correct solution 1 mark Obtains a set of values for λ and μ
$\therefore \text{ the two lines do not intersect}$ 12 (a) (ii) $\begin{pmatrix} 2\\2\\-3 \end{pmatrix} \neq k \begin{pmatrix} 1\\2\\-2 \end{pmatrix}$ where $k \in \mathbb{Z}$ i.e. the direction vectors are not scalar multiples of each other.	1	1 mark • Correct explanation
12(b) $z = \frac{3 \pm \sqrt{9 - 4(3 + i)}}{2}$ $a^{2} - b^{2} = -3$ $a^{2} + b^{2} = 5$ $a^{2} \pm \sqrt{-3 - 4i}$ $a^{2} + b^{2} = 5$ $2a^{2} = 2$ $a^{2} \pm (1 - 2i)$ $z = 2 - i \text{ or } 1 + i$ $a^{2} - b^{2} = -3$ $a^{2} + b^{2} = 5$ $2a^{2} = 2$ $a = \pm 1 , \ b = \mp 2$ $\sqrt{-3 - 4i} = \pm (1 - 2i)$	3	 3 marks Correct solution 2 marks Finds √-3-4i or equivalent merit 1 mark Completes the square or uses the quadratic formula

Solution	Marks	Comments
12(c) $\int \frac{dx}{(x+2)\sqrt{x^2+4x-5}} \qquad x+2=3\sec\theta \Rightarrow \sec\theta = \frac{x+2}{3}$ $= \int \frac{3\sec\theta\tan\theta d\theta}{3\sec\theta\sqrt{9\sec^2\theta-9}} \qquad dx = 3\sec\theta\tan\theta d\theta$ $= \int \frac{\tan\theta d\theta}{3\tan\theta}$ $= \frac{1}{3}\int d\theta$ $= \frac{1}{3}\theta + c$ $= \frac{1}{3}\tan^{-1}\left(\frac{\sqrt{x^2+4x-5}}{3}\right) + c$ Note: whilst $\frac{1}{3}\sec^{-1}\left(\frac{x+2}{3}\right)$ is correct for $x \ge 1$, the correct answer for $x \le -5$ would be $-\frac{1}{3}\sec^{-1}\left(\frac{x+2}{3}\right)$	3	3 marks • Correct solution 2 marks • Transforms the integrand via a suitable substitution or equivalent merit 1 mark • Completes the square in the denominator Note: no penalty for the answer $\frac{1}{3} \sec^{-1}\left(\frac{x+2}{3}\right)$
12 (d) (i) $z^{5}-1=0$ $z^{5}=1$ $z=\operatorname{cis}\left(\frac{2\pi k}{5}\right) \text{ where } k \in \mathbb{Z}$ $z=\cos 0 + i\sin 0 , \cos \frac{2\pi}{5} + i\sin \frac{2\pi}{5}, \cos \left(-\frac{2\pi}{5}\right) + i\sin \left(-\frac{2\pi}{5}\right), \cos \frac{4\pi}{5} + i\sin \frac{4\pi}{5}, \cos \left(-\frac{4\pi}{5}\right) + i\sin \left(-\frac{4\pi}{5}\right)$ 12 (d) (ii) $x^{4}+x^{3}+x^{2}+x+1=(x^{2}+ax+1)(x^{2}+bx+1)$ $=x^{4}+(a+b)x^{3}+(2+ab)x^{2}+(a+b)x+1$ by equating coefficients	2	 2 marks Correct solution 1 mark Uses de Moivre's theorem to generate the fifth roots of unity or equivalent merit <i>Note: no penalty is cis0 is written as 1</i> 2 marks Correct solution 1 mark Finds two
$a+b=1$ $a+b=1$ $2+ab=1$ $ab=-1$ $ab=-1$ $b=-\frac{1}{a}$ $a=\frac{1\pm\sqrt{5}}{2}$ thus $a=\frac{1-\sqrt{5}}{2}$ and by symmetry $b=\frac{1+\sqrt{5}}{2}$	2	relationships between <i>a</i> and <i>b</i> or equivalent merit
12 (d) (iii) $\frac{x^{2}-1}{x-1} = x^{4} + x^{3} + x^{2} + x + 1$ So the roots of $x^{4} + x^{3} + x^{2} + x + 1 = 0$ are the same as the roots of $x^{5} - 1 = 0$, excluding $x = 1$. Additionally, as the coefficients of $x^{2} + ax + 1$ are real, then all complex roots must appear in conjugate pairs. Since $\frac{2\pi}{5}$ is acute, $\cos\frac{2\pi}{5} > 0$ $\therefore -a = 2\cos\frac{2\pi}{5}$ (sum of the roots) $2\cos\frac{2\pi}{5} = \frac{-1 + \sqrt{5}}{2}$ $\cos\frac{2\pi}{5} = \frac{\sqrt{5} - 1}{4}$	2	• Correct solution 1 mark • Connects the roots of $x^5 - 1 = 0$ with the roots of $x^4 + x^3 + x^2 + x + 1 = 0$ or equivalent merit

Solution	Marks	Comments
QUESTION 13	[
13 (a) (i) $\frac{dx}{dt} = (k-x)^2$ $\int_0^x \frac{dx}{(k-x)^2} = \int_0^t dt$ $t = \left[\frac{1}{k-x}\right]_0^x$ $= \frac{1}{k-x} - \frac{1}{k}$ $t + \frac{1}{k} = \frac{1}{k-x}$ $\frac{kt+1}{k} = \frac{1}{k-x}$ $k - x = \frac{k}{kt+1}$ $x = k - \frac{k}{kt+1}$	3	 S marks Correct solution 2 marks Finds x as a function of t or equivalent merit 1 mark Finds an expression for t as a function of x or equivalent merit
$\therefore x < k \qquad \left(k > 0 \land t > 0 \Rightarrow \frac{k}{kt+1} > 0\right)$		
13 (a) (ii) $v = (k-x)^2 > 0$ $(x \neq k)$ Thus the particle is always moving to the right $\ddot{x} = v \frac{dv}{dx}$ $= (k-x)^2 \times 2(k-x)(-1)$ $= -2(k-x)^3$ since $x < k$, $\ddot{x} < 0$ as \ddot{x} and y are in opposite directions, the particle is slowing down.	2	 2 marks Correct solution 1 mark Notes that v > 0 finds x in terms of x or equivalent merit
$13 \text{ (b) (i)} \frac{5-5x^2}{(1+2x)(1+x^2)} \equiv \frac{A}{1+2x} + \frac{Bx+C}{1+x^2}$ $x = -\frac{1}{2} \qquad x = i$ $A = \frac{5-5\left(-\frac{1}{2}\right)^2}{\left(1+\left(-\frac{1}{2}\right)^2\right)} \qquad Bi+C = \frac{5-5i^2}{1+2i}$ $= \frac{10}{1+2i} \times \frac{1-2i}{1-2i}$ $= \frac{5-\frac{5}{4}}{1+\frac{1}{4}} \qquad = \frac{10-20i}{5}$ $= 2-4i$ $= 3 \qquad \therefore \qquad B = -4, \ C = 2$ $\int_{0}^{1} \frac{5-5x^2}{(1+2x)(1+x^2)} dx = \int_{0}^{1} \left[\frac{3}{1+2x} - \frac{4x}{1+x^2} + \frac{2}{1+x^2}\right] dx$ $= \left[\frac{3}{2}\ln 1+2x - 2\ln 1+x^2 + 2\tan^{-1}x\right]_{0}^{1}$ $= \frac{3}{2}\ln 3 - 2\ln 2 + 2\left(\frac{\pi}{4}\right) - 0$ $= \frac{1}{2}\ln\frac{3^3}{2^4} + \frac{\pi}{2}$ $= \frac{1}{2}\left(\ln\frac{27}{16} + \pi\right)$	3	3 marks • Correct solution 2 marks • Finds the primitive 1 mark • Decomposes the integrand into partial fractions

Solution		Comments
13 (b) (ii) $\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{1 + 2\sin x + \cos x} dx$ $t = \tan \frac{x}{2}$ $dx = \frac{\frac{2dt}{1 + t^2}}{\frac{1 - t^2}{1 + t^2}} \times \frac{2dt}{1 + t^2}$ when $x = 0$, $t = 0$ when $x = \frac{\pi}{2}$, $t = 1$		 3 marks Correct solution 2 marks Transforms the integrand into a multiple of part (i) 1 mark Substitutes <i>t</i>-results into the integrand
$= \int_{0}^{1} \frac{2 - 2t^{2}}{(1 + t^{2} + 4t + 1 - t^{2})(1 + t^{2})} dt$ $= \int_{0}^{1} \frac{2 - 2t^{2}}{(2 + 4t)(1 + t^{2})} dt$	3	
$=\frac{1}{5}\int_{0}^{1}\frac{5-5t^{2}}{(1+2t)(1+t^{2})}dt$ $=\frac{1}{10}\left(\ln\frac{27}{16}+\pi\right)$		2 marks
13 (c) (i) circle has equation $ z = a$ $z\overline{z} = a^2$ $\therefore p\overline{p} = q\overline{q} = a^2$ $a^2(p-q) = a^2p - a^2q$ $= q\overline{q}p - p\overline{p}q$ $= pq(\overline{q} - \overline{p})$ $pq = \frac{a^2(p-q)}{\overline{q} - \overline{p}}$	2	2 marks • Correct solution 1 mark • Establishes $p\overline{p} = q\overline{q} = a^2$ or equivalent merit
13 (c) (ii) if $PQ \perp RS$ then $q - p = ki(r-s)$ $pq + rs = \frac{a^2(p-q)}{\overline{q}-\overline{p}} + \frac{a^2(s-r)}{\overline{r}-\overline{s}}$ $= \frac{a^2i(s-r)}{-i(\overline{r}-\overline{s})} + \frac{a^2(s-r)}{(\overline{r}-\overline{s})}$ $= -\frac{a^2(s-r)}{(\overline{r}-\overline{s})} + \frac{a^2(s-r)}{(\overline{r}-\overline{s})}$ $= 0$	2	2 marks • Correct solution 1 mark • Establishes q - p = (r - s) or equivalent merit

	So	lution	Marks	Comments
14 (2)	foress on M	QUESTION 14		1 martic
I4 (a) Res as b	torces on M N_M T M_g solving forces down the plane $M\ddot{x} = Mg\sin\alpha - T$ both particles are connected by a Ma = M ma = T (M+m)a = g $a = \frac{g}{M}$ mass M will slide $M\sin\alpha - m\cos\alpha > 0$ $M\sin\alpha > m\cos\alpha$ $\frac{\sin\alpha}{\cos\alpha} > \frac{m}{M}$	forces on <i>m</i> T $mg\dot{\alpha}$	4	 4 marks Correct solution 3 marks Finds an expression for <i>a</i> involving <i>M</i>, <i>m</i> and <i>α</i> 2 marks Links the equations of motion for the two particles by eliminating T or equivalent merit 1 mark Finds an equation of motion for either particle
	$\tan \alpha > \frac{m}{M}$			
14 (b) (i) ($\frac{\sqrt{a}}{\sqrt{a}} - \sqrt{b} \Big)^2 \ge 0$			1 mark
a	$a - 2\sqrt{ab} + b \ge 0$		1	• Correct solution
	$a+b \ge 2\sqrt{ab}$			
14 (b) (ii) 2	$2^{2x} + 1 \ge 2\sqrt{2^{2x}}$ $2^{2y} + 2 \ge 2^{2y}$ $= 2 \times 2^{x}$ $= 2^{x+1}$ $= 2^{y}$ $\therefore (2^{2x} + 1)(2^{2y} + 2)(2^{2z} + 8)$ $= 2^{5+x+y+z}$ $a+b \ge 2\sqrt{ab} \text{ and eq}$ $2^{2x} = 1$ $2^{2y} = 2^{2y}$ $2x = 0$ $2^{y} = 2^{2y}$ $2x = 0$ $2^{y} = 2^{y}$ $x = 0$ $y = 2^{y}$ $x = 0$	$\sqrt{2^{2y+1}} \qquad 2^{2z} + 8 \ge 2\sqrt{2^{2z+3}}$ $\times 2^{y+\frac{1}{2}} = 2 \times 2^{z+\frac{3}{2}}$ $y^{+\frac{3}{2}} = 2^{z+\frac{5}{2}}$ $y^{2x+1} \times 2^{y+\frac{3}{2}} \times 2^{z+\frac{5}{2}} = 2^{z+\frac{5}{2}}$ $y^{2x+1} \times 2^{y+\frac{3}{2}} \times 2^{z+\frac{5}{2}}$ $y^{2z} = 8$ $= 1 \qquad 2z = 3$ $= \frac{1}{2} \qquad z = \frac{3}{2}$ $= \frac{1}{2}, z = \frac{3}{2}$	3	 3 marks Correct solution 2 marks Establishes the required inequality or equivalent merit 1 mark Attempts to use part (i) in the solution
(a	$a^{6} - a^{2} - b^{2})(a^{4} + a^{2}b^{2} + b^{4}) + (a^{2} - b^{2})$ $(a^{2} - b^{2})(a^{4} + a^{2}b)$ $a^{2} - b^{2} = 0$ $a = b (a > 0, b > 0)$ No solution as $A \text{ and } B \text{ are distinct points}$ $\therefore A \text{ and } B \text{ cannot}$	$ \begin{vmatrix} a^{3} \\ a^{2} \\ a \end{vmatrix} = \begin{vmatrix} b^{3} \\ b^{2} \\ b \end{vmatrix} $ $ a^{6} + a^{4} + a^{2} = b^{6} + b^{4} + b^{2} $ $ b^{6} + a^{4} - b^{4} + a^{2} - b^{2} = 0 $ $ b(a^{2} + b^{2}) + (a^{2} - b^{2}) = 0 $ $ b(a^{2} + b^{2}) + (a^{2} - b^{2}) = 0 $ $ a^{4} + a^{2}b^{2} + b^{4} + a^{2} + b^{2} + b^{2} + 1 = 0 $ $ a^{4} + a^{2}b^{2} + b^{4} + a^{2} + b^{2} + b^{2} + 1 = 0 $ $ No \text{ solution as} $ $ a > 0 \text{ and } b > 0 $ $ t \text{ lie on a sphere centred } O $	3	 Correct solution 2 marks Equates the two magnitudes and finds an algebraic expression with (a - b)² as a common factor 1 mark Finds the magnitude of either vector or equivalent merit

Solution	Marks	Comments
14 (c) (ii) $\cos \angle AOB = \frac{a^3 b^3 + a^2 b^2 + ab}{\sqrt{b^2 + a^2 b^2 + ab}}$		3 marks • Correct solution
$\sqrt{a^\circ + a^+ + a^2} \sqrt{b^\circ + b^+ + b^2}$		2 marks
$\leq \frac{3}{\sqrt{2} \sqrt[3]{12} \sqrt{2} \sqrt[3]{12}} \qquad (AM \geq GM)$		establishes $\angle AOB \le 1$
$\sqrt{3}$ $\sqrt{a^{12}}$ $\sqrt{3}$ $\sqrt{b^{12}}$		1 mark
$=\frac{3}{3a^4b^4}$	3	• Uses the dot product to find an
=1		expression for
$0 < \cos 40B < 1$ (as equality ocurs when $a = b$		$\angle AOB$
however A and B are distinct points)		
$\therefore 0 < \angle AOB < \frac{\pi}{2}$		
	1	
$\frac{\frac{\pi}{2}}{\mathbf{f}} \cdot 2 \qquad \frac{\pi}{2}$		3 marks • Correct solution
15 (a) $\int \frac{\sin^2 x}{1+2x} dx = -\int \frac{\sin^2(-u)}{1+2x^2} du$ $u = -x$ when $x = -\frac{\pi}{2}$ $u = \frac{\pi}{2}$		2 marks
$-\frac{\pi}{2}$ $-\frac{\pi}{2}$ $-\frac{\pi}{2}$ 2 2		• Simplifies the
$du = -dx \text{ when } x = \frac{\pi}{2} u = -\frac{\pi}{2}$		simple trig integral
$\int_{0}^{\frac{1}{2}} \sin^2 u = 2^{\mu}$		or equivalent merit
$=\int \frac{\sin u}{1+2^{-u}} \times \frac{2}{2^{u}} du$		• Uses the given
$-\frac{\pi}{2}$		substitution to
<u>π</u>		transform the integrand
$\int_{1}^{2} 2^{u} \sin^{2} u$		integrand
$=\int \frac{2}{2^{u}+1} \frac{du}{du}$		
$-\frac{\pi}{2}$		
$\frac{\pi}{2}$ $\frac{\pi}{2}$		
$\int_{1}^{2} (1+2^{x})\sin^{2}x = \int_{1}^{2} \frac{1}{2} \frac{1}{2$	3	
$\int \frac{1}{1+2^x} dx = \int \sin^2 x dx$	5	
$-\frac{\pi}{2}$ $-\frac{\pi}{2}$		
$\frac{\pi}{2}$ $\frac{\pi}{2}$		
$\frac{1}{12} \frac{\sin^2 x}{\sin^2 x} dr = \frac{1}{12} \int (1 - \cos^2 x) dr$		
$\frac{1}{2} \int_{\pi} \frac{1}{1+2^x} dx - \frac{1}{2} \int_{\pi} \frac{1-\cos 2x}{x} dx$		
$-\frac{\pi}{2}$ $-\frac{\pi}{2}$		
$\frac{\pi}{2}$ $-\frac{\pi}{2}$		
$\int \frac{\sin^2 x}{dx} dx = \frac{1}{2} \left[x - \frac{1}{2} \sin 2x \right]^2 \pi$		
$\int_{\pi} 1 + 2^{x} 4 \begin{bmatrix} x & 2 \\ 2 & 2 \end{bmatrix} \frac{1}{2}$		
$-\frac{2}{2}$		
$=\frac{\pi}{8}-0+\frac{\pi}{8}+0$		
π		
$=\overline{4}$		
15 (b) (i) mkv^2 $mx = mg - mkv^2$		• Correct solution
$\mathbf{x} = g - kv^2$		1 mark
$mg \qquad terminal velocity occurs when x = 0$		• Shows the two forces on the
$\oint g - kW^2 = 0$		particle in a force
$k = \frac{g}{W^2}$	2	diagram Finds <i>k</i>
σv^2		- Fillus K
$\therefore \qquad \qquad$		
$g \sim 2$		
$=\frac{3}{W^2}(W^2-v^2)$		

Solution	Marks	Comments
$15(b) (ii) \qquad v \frac{dv}{dx} = \frac{g}{W^2} (W^2 - v^2) \qquad \qquad \frac{dv}{dt} = \frac{g}{W^2} (W^2 - v^2) \\ \frac{W^2}{g} \int_0^v \frac{v dv}{W^2 - v^2} = \int_0^x dx \qquad \qquad \frac{W^2}{g} \int_0^v \frac{dv}{W^2 - v^2} = \int_0^t dt \\ x = -\frac{W^2}{2g} \Big[\ln(W^2 - v^2) \Big]_0^v \qquad \qquad t = \frac{W^2}{g} \Big[\frac{1}{2W} \ln\left(\frac{W + v}{W - v}\right) \Big]_0^v \\ = -\frac{W^2}{2g} \ln\left(\frac{W^2 - v^2}{W^2}\right) \qquad \qquad = \frac{W}{2g} \ln\left(\frac{W + v}{W - v}\right) \\ Wt - x = \frac{W^2}{2g} \ln\left(\frac{W + v}{W - v}\right) + \frac{W^2}{2g} \ln\left(\frac{W^2 - v^2}{W^2}\right) \\ = \frac{W^2}{2g} \ln\left(\frac{W + v}{W - v} \times \frac{(W - v)(W + v)}{W^2}\right) \\ = \frac{W^2}{2g} \ln\left(\frac{(W + v)^2}{W^2}\right) \\ = \frac{W^2}{g} \ln\left(1 + \frac{v}{W}\right)$	4	 4 marks Correct solution 3 marks Attempts to link the two acceleration equations and makes significant progress towards the final solution 2 marks Finds a primitive for x and t in terms of v 1 mark Finds a primitive for x or t in terms of v
15(c) (i) Let <i>r</i> be an irrational number and that $\sqrt[3]{r} = \frac{p}{q}$ where $(p \land q \in \mathbb{Z}^+) \land q \neq 0$ i.e. $\sqrt[3]{r}$ is rational also $p \land q$ are coprime $r = \frac{p^3}{q^3}$ $rq^3 = p^3$ $\therefore r$ is a factor of p^3 however rq^3 is irrational as <i>r</i> is irrational, yet p^3 is rational ($p \in \mathbb{Z}$) $\therefore \sqrt[3]{r}$ is irrational, by contradiction	3	 3 marks Correct solution 2 marks Shows that <i>r</i> is a factor of <i>p</i>³ or equivalent merit 1 mark Attempts proof by contradiction or equivalent merit
15(c) (ii) $u_n = 5^{\frac{1}{3^*}}$, prove that u_n is an irrational number for $n \in \mathbb{Z}^+$ When $n = 1$ $u_1 = 5^{\frac{1}{3}}$ $= \sqrt[3]{5}$ Which is irrational Hence the result is true for $n = 1$ Assume the result is true for $n = k$ where $k \in \mathbb{Z}^+$ i.e. $u_k = 5^{\frac{1}{3^{k+1}}}$ is irrational Prove the result is true for $n = k + 1$ i.e. $u_{k+1} = 5^{\frac{1}{3^{k+1}}}$ is irrational PROOF: $u_{k+1} = 5^{\frac{1}{3^{k+1}}}$ $= 5^{\frac{1}{3^{k+1}}}$ $= 4u_k^{\frac{1}{3}}$ $= 3\sqrt{u_k}$ from part (i) the cube root of an irrational number is also irrational Hence the result is true for $n = k + 1$, if it is true for $n = k$ Since the result is true for $n = 1$, then it is true $\forall n$ where $n \in \mathbb{Z}^+$ by induction.	3	 There are 4 key parts of the induction; Proving the result true for n = 1 Clearly stating the assumption and what is to be proven Using the assumption in the proof and acknowledges the condition for (i) Correctly proving the required statement 3 marks Successfully does all of the 4 key parts 2 marks Successfully does 3 of the 4 key parts 1 mark Successfully does 2 of the 4 key parts

Solution	Marks	Comments
QUESTION 16		
16 (a) (i) $I_{n} = \int_{0}^{2\pi} e^{x} \cos nx dx \qquad u = e^{x} \qquad v = \frac{1}{n} \sin nx$ $du = e^{xdx} \qquad du = \cos nx dx$ $= \left[\frac{e^{x} \sin nx}{n}\right]_{0}^{2\pi} - \frac{1}{n} \int_{0}^{2\pi} e^{x} \sin nx dx \qquad u = e^{x} \qquad v = -\frac{1}{n^{2}} \cos nx$ $= -\frac{1}{n} \int_{0}^{2\pi} e^{x} \sin nx dx \qquad u = e^{x} \qquad du = \sin nx dx$		 3 marks Correct solution 2 marks Makes significant progress 1 mark Uses integration by parts to find a valid result
$= \left[\frac{e^{x}\cos nx}{n^{2}}\right]_{0}^{2\pi} - \frac{1}{n^{2}}\int_{0}^{2\pi} e^{x}\cos nx dx$	3	
$= \frac{e^{2\pi} - 1}{n^2} - \frac{1}{n^2} I_n$ $\frac{n^2 + 1}{n^2} I_n = \frac{e^{2\pi} - 1}{n^2}$ $I_n = \frac{1}{n^2 + 1} (e^{2\pi} - 1)$		
$16 \text{ (a) (ii)} \int_{0}^{2\pi} e^x \cos x \cos 6x \ dx = \frac{1}{2} \int_{0}^{2\pi} e^x (\cos 5x + \cos 7x) dx$ $= \frac{1}{2} \left[\frac{1}{26} (e^{2\pi} - 1) + \frac{1}{50} (e^{2\pi} - 1) \right]$ $= \frac{19(e^{2\pi} - 1)}{650}$	3	 3 marks Correct solution 2 marks Finds I₅ or I₇ or equivalent merit 1 mark Rewrites the product of two trig functions as the sum of two trig functions
 16 (b) (i) A tetrahedron has six edges in total, two have length a , two have length b and two have length c . As no two edges sharing a common vertex are equal, then the three edges of any face must be a , b and c , and thus all four faces are congruent. 	1	1 mark • Correct explanation
16 (b) (ii) $ \overrightarrow{OA} = \overrightarrow{BC} $ $ \underline{a} ^2 = \underline{c} - \underline{b} ^2$ $= (\underline{c} - \underline{b}) \cdot (\underline{c} + \underline{b})$ $= \underline{c} \cdot \underline{c} - 2\underline{b} \cdot \underline{c} + \underline{b} \cdot \underline{b}$ $= \underline{c} ^2 - 2\underline{b} \cdot \underline{c} + \underline{b} ^2$ $2\underline{b} \cdot \underline{c} = \underline{b} ^2 + \underline{c} ^2 - \underline{a} ^2$	1	1 mark • Correct solution
16 (c) (iii) $\underline{\alpha} \cdot (\underline{b} + \underline{c}) = \underline{\alpha} \cdot \underline{b} + \underline{\alpha} \cdot \underline{c}$ $= \frac{1}{2} \left(\underline{\alpha} ^2 + \underline{b} ^2 - \underline{c} ^2 \right) + \frac{1}{2} \left(\underline{\alpha} ^2 + \underline{c} ^2 - \underline{b} ^2 \right)$ $= \frac{1}{2} \times 2 \underline{\alpha} ^2$ $= \alpha ^2$	1	1 mark• Correct solution

Solution	Marks	Comments
16 (b) (iv) $ \underline{a} - \underline{b} - \underline{c} ^2 = \underline{a} - (\underline{b} + \underline{c}) ^2$ $= \underline{a} ^2 - 2\underline{a} \cdot (\underline{b} + \underline{c}) + \underline{b} + \underline{c} ^2$ $= \underline{a} ^2 - 2 \underline{a} ^2 + \underline{b} ^2 + 2\underline{b} \cdot \underline{c} + \underline{c} ^2$ $= - \underline{a} ^2 + \underline{b} ^2 \underline{b} ^2 + \underline{c} ^2 - \underline{a} ^2 + \underline{c} ^2$ $= 2(\underline{b} ^2 + \underline{c} ^2 - \underline{a} ^2)$ $\therefore \underline{b} ^2 + \underline{c} ^2 - \underline{a} ^2 \ge 0$ now in ΔABC $ \underline{a} ^2 = \underline{b} ^2 + \underline{c} ^2 - 2 \underline{b} \underline{c} \cos \angle BAC$ $\cos \angle ABC = \frac{ \underline{b} ^2 + \underline{c} ^2 - \underline{a} ^2}{2 \underline{a} \underline{b} }$ ≥ 0	3	3 marks • Correct solution 2 marks • establishes $\angle BAC$ cannot be obtuse or equivalent merit 1 mark • shows $ \underline{a}-\underline{b}-\underline{c} ^2 = 2(\underline{b} ^2 + \underline{c} ^2 - \underline{a} ^2)$ or equivalent merit
16 (b) (v) If $\angle BAC = 90^\circ \Rightarrow \cos \angle BAC = 0$ $\therefore \underline{b} ^2 + \underline{c} ^2 - \underline{a} ^2 = 0$ $ \underline{a} - \underline{b} - \underline{c} ^2 = 0$ $\underline{a} = \underline{b} + \underline{c}$ This means that \underline{a} would be the diagonal of the parallelogram <i>OBAC</i> i.e. <i>OBAC</i> would not be a tetrahedron Thus it is not possible for any of the angles between pairs of edges in an isosceles tetrahedron to be a right angle.	2	2 marks • correct explanation 1 mark • establishes a = b + c or equivalent merit
$ \frac{16 \text{ (c)}}{1 + \sqrt{2}} + \frac{1}{\sqrt{3} + \sqrt{4}} + \frac{1}{\sqrt{5} + \sqrt{6}} + \dots + \frac{1}{\sqrt{2023} + \sqrt{2024}} $ $ > \frac{1}{\sqrt{2} + \sqrt{3}} + \frac{1}{\sqrt{4} + \sqrt{5}} + \frac{1}{\sqrt{6} + \sqrt{7}} + \dots + \frac{1}{\sqrt{2024} + \sqrt{2025}} $ $ \therefore 2 \left(\frac{1}{1 + \sqrt{2}} + \frac{1}{\sqrt{3} + \sqrt{4}} + \frac{1}{\sqrt{4} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{6}} + \dots + \frac{1}{\sqrt{2023} + \sqrt{2024}} \right) $ $ > \frac{1}{1 + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{4}} + \frac{1}{\sqrt{5} + \sqrt{6}} + \dots + \frac{1}{\sqrt{2023} + \sqrt{2024}} + \frac{1}{\sqrt{2024} + \sqrt{2025}} $ $ = \frac{\sqrt{2} - 1}{1} + \frac{\sqrt{3} - \sqrt{2}}{1} + \frac{\sqrt{4} - \sqrt{3}}{1} + \frac{\sqrt{6} - \sqrt{5}}{1} + \dots + \frac{\sqrt{2024} - \sqrt{2023}}{1} + \frac{\sqrt{2025} - \sqrt{2024}}{1} $ $ = \sqrt{2025} - 1 $ $ = 44 $ $ \therefore \frac{1}{1 + \sqrt{2}} + \frac{1}{\sqrt{3} + \sqrt{4}} + \frac{1}{\sqrt{4} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{6}} + \dots + \frac{1}{\sqrt{2023} + \sqrt{2024}} > 22 $	3	 3 marks Correct solution 2 marks Creates a series of fractions such that it reduces down to two terms or equivalent merit 1 mark Rationalises the denominator of each fraction so that they are all 1 or – 1, or equivalent merit